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Anthropogenic changes to the landscape and climate cause novel ecological

and evolutionary pressures, leading to potentially dramatic changes in the

distribution of biodiversity. Warm winter temperatures can shift species’ dis-

tributions to regions that were previously uninhabitable. Further, urbanization

and supplementary feeding may facilitate range expansions and potentially

reduce migration tendency. Here we explore how these factors interact to

cause non-uniform effects across a species’s range. Using 17 years of data

from the citizen science programme Project FeederWatch, we examined the

relationships between urbanization, winter temperatures and the availability

of supplementary food (i.e. artificial nectar) on the winter range expansion

(more than 700 km northward in the past two decades) of Anna’s humming-

birds (Calypte anna). We found that Anna’s hummingbirds have colonized

colder locations over time, were more likely to colonize sites with higher hous-

ing density and were more likely to visit feeders in the expanded range

compared to the historical range. Additionally, their range expansion mirrored

a corresponding increase over time in the tendency of people to provide nectar

feeders in the expanded range. This work illustrates how humans may alter

the distribution and potentially the migratory behaviour of species through

landscape and resource modification.
1. Introduction
The increase in temperatures globally has allowed many species to colonize

regions that were previously inhospitable [1]. This has led to widespread changes

in species’ distributions, particularly poleward range shifts [1–8]. Concurrently,

urbanization is changing biodiversity in dramatic ways, such as by reducing

the number of species in urban areas and shifting the composition towards

generalists [9,10]. Climate change and urbanization may interact and lead to

non-uniform consequences across a species’s range. For example, urban micro-

climates at range margins may facilitate geographical expansion [11,12] or

reduced migratory behaviour [13–16]. This climate-tempering effect of urbaniz-

ation may be related to the local retention of heat in urban areas (‘heat island

effect’) [17], increased availability of non-native fruit, seeds or flowers that

provide food throughout the winter [18], or increased availability of supple-

mentary food (e.g. seed, suet, meat or nectar) [19–21]. Interactions between

urbanization and climate change may make both effects even more pronounced

and impactful to species’ distributions [11,22].

Supplementary feeding is an aspect of urbanization that has the potential to

affect both the distribution and behaviour of avian taxa on a broad geographical

scale [19–21,23–27]. Up to half of households in the United States, United King-

dom and Australia have been estimated to offer supplementary food to wild birds

[28]. The ecological and evolutionary impacts of this widespread hobby are poten-

tially vast; for example, many species show increased reproductive success in

response to supplementary food [20,24]. Other potential consequences of sup-

plementary feeding include increased winter survival and decreased migration
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Figure 1. The distribution of Anna’s hummingbirds in winter (January and February) at Project FeederWatch count sites (small black dots) over 24 years. Mean
maximum birds by site, binned into three time periods: 1990 – 1997 (n ¼ 1913 sites), 1998 – 2005 (n ¼ 3583 sites) and 2006 – 2013 (n ¼ 3151 sites). Maps
generated using ARCGIS 10.0, kriging interpolation (ESRI Inc., 1999 – 2010).
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tendency, documented in a few species of birds and even mam-

mals [29–33]. This possible consequence of supplementary

feeding has not been explored in nectivorous birds, despite a

pattern of northward winter range expansions observed in

several North American hummingbirds [34–37].

The Anna’s hummingbird (Calypte anna) provides a case

study in which to investigate the relative contributions of cli-

mate, urbanization and supplementary feeding on potential

changes in migratory behaviour and resulting shifts in range.

This species has shown a significant northward winter range

expansion over the past two decades (figure 1) [38–40]. The

first record in Alaska was in 1971 [38], and there is now a con-

siderable post-breeding movement northward into Canada

and Alaska [41]. Historically, Anna’s hummingbirds at the

northern limits of their range would move south for winter

and return the following spring to breed. Now many individ-

uals overwinter and presumably breed at these northern

latitudes, potentially eliminating or shortening their south-

ward movement [40]. Because Anna’s hummingbirds are

small (5–6 grams) and require reliable, daily access to food

to maintain their high metabolism, the northern edge of

their winter range is likely to be limited by both temperature

and nectar availability [42,43]. The cause of their winter expan-

sion remains speculative, but may be driven by warming

winter temperatures, increased urbanization or increased

winter supplementary feeding [35].

Here, we quantitatively documented the range expansion of

the Anna’s hummingbird using an occupancy modelling

framework [44] and data from Project FeederWatch, a long-

term citizen science programme [45]. We used climate data,

urbanization indices and estimates of supplementary feeding

prevalence from 1997–2013 to test two alternative hypotheses

for explaining their winter range expansion: (i) that the

expansion has been facilitated by increased availability of

anthropogenically provided habitat or food, or (ii) that the

expansion is due solely to warming winter temperatures.

Specifically, we predicted that if anthropogenic habitat and

food provisioning has facilitated the winter range expansion

of Anna’s hummingbirds, then (i) hummingbirds should be

occurring in areas with lower temperatures than previously

occupied, (ii) hummingbirds should be preferentially coloniz-

ing areas with higher urbanization in the expanded range, but

not in the historical range, and (iii) hummingbirds should be
more dependent upon supplementary food (i.e. nectar feeders)

in the expanded range than in the historical range. In contrast, if

increasingly mild winters have facilitated the range expansion

irrespective of anthropogenic habitat and food, then we pre-

dicted that (i) hummingbirds should be occurring in areas

with the same climate envelope as previously occupied, even

though those areas are now farther north, (ii) hummingbirds

should be equally associated with urban locations in the

expanded range and the historical range, and (iii) humming-

birds should be equally dependent upon supplementary

feeders in the expanded range and the historical range.
2. Methods
(a) Study species
Anna’s hummingbirds inhabit the west coast of North America,

as far south as northwest Baja California and Mexico, and as far

north as southwest British Columbia [35]. They are one of the

few species of hummingbirds in North America that are not

long-distance migrants, and their local seasonal movements are

complex, poorly understood and thought to be related to harsh-

ness of weather conditions [35,41]. Nesting occurs between

December and June depending upon the latitude, with earlier nest-

ing at lower latitudes. In late summer in southern locations there is

a movement to higher elevations following peaks in flower abun-

dance [35]. Birds are commonly found in scrubby or suburban

habitat with suitable bushy vegetation and are frequently attracted

to yards with nectar feeders and flowering plants [35].

(b) Data sources
(i) Project FeederWatch
Data on Anna’s hummingbird occupancy were collected through

the citizen science programme Project FeederWatch (PFW), run

through the Cornell Laboratory of Ornithology and Bird Studies

Canada [45]. PFW participants follow a standardized protocol to

count the maximum number of every species seen in the proximity

of a bird feeding station during periodic 2-day counts. These

counts are repeated as often as every week from November–

April each year. By requiring that participants only report the

maximum number of each species in view at one time during the

count, the protocol ensures that participants are not repeatedly

recording the same individual birds within a count. Additionally,

participants report all of the species seen, so the protocol allows
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inference about both presence and absence (detection and non-

detection) of species in every count. All participants report an

estimate of the amount of time that they watched their feeders

(effort) and the date of the observation (date).

We extracted Anna’s hummingbird occupancy data from PFW

sites in Arizona, California, Oregon and Washington from 1997 to

2013. We restricted all occupancy analyses to sites with nectar fee-

ders because sites offering nectar at some point between

November and April were much more likely to have humming-

birds than sites without nectar feeders (79% of sites with nectar

feeders had a hummingbird compared with only 28% of sites with-

out nectar feeders; likelihood ratio test: x2
1 ¼ 575:3, p , 0.001, n ¼

2306 sites). We also restricted all occupancy analyses to obser-

vations made during the months of December–February so late

autumn (November) or early spring (March–April) hummingbird

movements would not influence our results.

(ii) Climate and elevation data
We extracted the daily minimum temperature (Tmin), averaged

over all days for the month of January (mean minimum January

temperature) and the total monthly precipitation (Ppt) for the

month of January (total January precipitation) for each site and

year, from the PRISM Climate Group gridded dataset (Oregon

State University, http://www.prism.oregonstate.edu). We chose

January as the representative winter month because that month

was temporally central to the bird occupancy data (December–

February). To control for the potential effects of topography on

occupancy, given that there are known elevational movements of

Anna’s hummingbirds [35], we extracted elevation data for each

site from the CGIAR Consortium for Spatial Information SRTM

90 m Digital Elevation Database (http://www.cgiar-csi.org/

data/srtm-90m-digital-elevation-database-v4-1).

(iii) Housing density and land cover data
We calculated housing density, defined as the total number of

housing units per area, following methodology in [46]. Housing

units were based on a nationwide, spatially explicit dataset at the

partial block group level, which corrects for variation introduced

into census blocks by political boundaries. Housing units include

permanent residences, seasonal houses and vacant units [46].
At each partial block group throughout the conterminous US,

housing density was estimated based on the 2000 US decennial

census [46], and we used these estimates to characterize housing

development throughout our study area. To quantify housing

density at each site, we summarized housing density within

1 km circular buffers of each site using the tool ‘intersect’ in

ARCGIS v. 10.1. We used the 1 km radius buffer because this

was an approximate home range given for several breeding

Anna’s hummingbirds [41]. Due to the presence of outliers, we

log-transformed the housing density data before analysis.

We extracted the proportion of urban land cover for each site

from the 2011 National Landcover Database, with land cover

classes 21 (developed, open space), 22 (developed, low intensity),

23 (developed, medium intensity), and 24 (developed, high

intensity; http://www.mrlc.gov/nlcd11_leg.php). Within each

1 km circular buffer of each site we divided the total number of

cells (30 � 30 m resolution) of the focal urban land cover by the

total number of cells within the buffer, which gave us the

proportion of urban land cover at each site.

(c) Statistical analysis
We explored the range expansion of Anna’s hummingbirds using

an occupancy-modelling framework implemented with the R pack-

age unmarked [47]. Occupancy models estimate the probability of a

focal species occupying a site given imperfect detection [48]. Fol-

lowing [11], we used the single-season modelling framework [48]

to explore how the relationships between occupancy, latitude and

temperature changed over time. Single-season models assume a

closed system with no extinction or colonization, which approxi-

mates our expectations for a December–February sampling

interval. Although mortality and emigration are certainly possible

during this (or any) sampling interval, we focused on a time period

when the species is largely sedentary. To quantify the northward

expansion, we created three single-season models of hummingbird

occupancy as a function of latitude for the years 1997 (n ¼ 98 sites),

2005 (n ¼ 356 sites) and 2013 (n ¼ 434 sites) with date and effort as

observation covariates. Sample sizes differed across years because

of different rates of participation in PFW, but occupancy models

are robust to such variation as long as the sampled sites are repre-

sentative of the region or time period of interest. We have no reason

http://www.prism.oregonstate.edu
http://www.prism.oregonstate.edu
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://www.mrlc.gov/nlcd11_leg.php
http://www.mrlc.gov/nlcd11_leg.php


Table 1. Single-season model estimates relating Anna’s hummingbird
occupancy (c) to latitude and mean minimum January temperature for 3
years (models estimates correspond to figure 2). Effort and date were
included in all models as observation-covariates. p-values , 0.05 are given
in italics.

predictor year (n sites) estimate s.e. z p

latitude 1997 (98) 21.64 0.32 25.21 0.000

2005 (356) 20.71 0.14 25.23 0.000

2013 (434) 20.02 0.15 20.14 0.891

temperature 1997 (98) 1.33 0.32 4.22 0.000

2005 (356) 1.02 0.18 5.69 0.000

2013 (434) 0.64 0.15 4.27 0.000 2000 2005 2010
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Figure 3. (a) Mean minimum January temperature (8C) from 1997 to 2013
in the historical range (below 428 latitude; grey circles, n ¼ 1269 sites for all
panels) and the expanded range (above 428 latitude; black circles, n ¼ 1037
sites for all panels). Error bars indicate standard error. (b) Proportion of sites
offering nectar feeders from 1997 to 2013 in the historical range and the
expanded range. Error bars indicate binomial standard error. (c) Proportion
of sites supporting Anna’s hummingbirds from 1997 to 2013 in the historical
range and the expanded range. Error bars indicate binomial standard error.
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to suspect that sampled sites were not representative of their

respective regions and time periods. To test the prediction that

contemporary hummingbirds are occupying sites with lower

temperatures than historically occupied, we created three single-

season models of hummingbird occupancy as a function of mean

minimum January temperature for the same sites and years

(1997, 2005 and 2013). Although there are known long-term pat-

terns of warming that have occurred in the Pacific Northwest

[49,50], we also tested how the mean minimum January tempera-

ture has changed at PFW sites from 1997 to 2013 using a linear

mixed model with year as a fixed effect and site ID as a random

effect, implemented with the R package lme4. For this analysis

we included sites that did not offer nectar feeders because we

were not assessing hummingbird occupancy. We binned sites

into those from the historical winter range (below 428 latitude,

n ¼ 1269 sites) and those from the expanded winter range (above

428 latitude, n ¼ 1037 sites). We chose this geographical demar-

cation based on the distribution of hummingbirds in the early

years of the study (1990–1997; figure 1).

To test the hypothesis that the winter range expansion

was associated with colonization of urban habitats (and potentially

provisioning of supplementary food) rather than winter tempera-

tures irrespective of habitat, we used a multi-season modelling

framework. Multi-season models allow for both extinction and

colonization between seasons and are therefore appropriate for

modelling occupancy over a multiple year sampling interval [51].

We used the subset of sites from 2002 to 2013 that offered nectar fee-

ders and for which we had housing density and land-cover data.

We omitted years preceding 2002 because of small sample sizes

(fewer than 45 sites per year). We binned sites into those from the

historical range (n ¼ 539 sites) and the expanded range (n ¼ 366

sites), and for each region modelled hummingbird colonization

as a function of the site covariates: housing density, proportion of

urban land cover, elevation, mean minimum January temperature

and total January precipitation. Because we wanted to compare

all site covariates in a consistent quantitative way, but some covari-

ates were static across years (housing density, proportion of urban

land cover and elevation) and some temporally dynamic (tempera-

ture and precipitation), we transformed the dynamic variables to

static variables by calculating a mean across years. All site covari-

ates were weakly correlated (r , 0.4) except housing density and

proportion of urban land cover, which were strongly correlated

(r ¼ 0.8). We included observation effort and date as observation-

covariates influencing detection, and latitude as a site covariate

influencing occupancy.

In addition to comparing the explanatory power of each site

covariate in models with all covariates (global models), we used

a model-selection approach with a criterion of DAIC , 2 indicat-

ing equivalent models to assess the importance of each site

covariate on colonization in the historical versus the expanded
range. We compared models with all but one of each site covari-

ate, univariate models with only one of each site covariate, the

putative best models for each region (for the historical range,

the univariate model with elevation as the site covariate and

for the expanded range, a model with housing density and temp-

erature as the site covariates), the global model, and a null model

with no site covariates. All models converged and produced

reasonable estimates and standard errors. Null models had low



Table 2. Multi-season model estimates for years 2002 – 2013 relating Anna’s hummingbird colonization (g) to all site covariates (‘predictor’) in the historical
range and the expanded range. Effort and date were included in each model as predictors of detection ( p) and latitude as a predictor of occupancy (c).
p-values , 0.05 are given in italics.

location predictor parameter estimate s.e. z p

expanded range (above 428)

n ¼ 366 sites

effort p 0.02 0.04 0.44 0.657

date p 20.22 0.04 25.82 0.000

latitude c 20.75 0.22 23.42 0.001

proportion urban g 20.13 0.18 20.73 0.467

elevation g 0.01 0.21 0.04 0.965

housing density g 0.73 0.20 3.57 0.000

temperature g 0.63 0.20 3.16 0.002

precipitation g 20.15 0.15 21.04 0.299

historical range (below 428)

n ¼ 539 sites

effort p 0.11 0.03 3.54 0.000

date p 20.16 0.03 25.63 0.000

latitude c 0.56 0.27 2.09 0.037

proportion urban g 0.73 0.47 1.56 0.119

elevation g 20.63 0.34 21.86 0.063

housing density g 20.34 0.42 20.80 0.423

temperature g 0.14 0.36 0.40 0.693

precipitation g 0.12 0.31 0.38 0.704
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support based on AIC ranking, indicating that covariates

improved model fit. Following [11], to evaluate the adequacy

of models we calculated the area under the curve (AUC) statistic

[52,53] for each year for global models in the historical and

expanded range. The AUC statistic represents the predictive

power of each model for each year. Values of AUC lower than

0.70 indicate poor discriminatory power, 0.70–0.80 indicate

acceptable discriminatory power and more than 0.80 indicate

excellent discriminatory power [53].

To test the hypothesis that hummingbirds were more reliant

upon nectar feeders in the expanded range compared with the his-

torical range, we used a multi-season model and included all sites

from 2002 to 2013 with nectar feeders and for which we had land

cover data (n ¼ 905 sites). We did not bin sites into the historical

versus expanded range because we wanted to assess how detection

varied across the entire latitudinal range. We included all site and

observation covariates in the model and allowed detectability to

vary with latitude. Detectability indicates the probability that a

hummingbird will be detected at a site given that a hummingbird

occupies the site. Therefore, modelling detection probability as a

function of latitude at PFW sites can be interpreted as how likely

it is for a hummingbird to visit nectar feeders at any given latitude

(for a similar use of detection probability to infer feeder visitation

rate, see [11]).

We used the presence and absence of hummingbird feeders

reported by participants across years to document a pattern of

northward expansion of supplementary nectar provisioning

from 1997 to 2013 (n ¼ 2306 sites). A feeder was considered ‘pre-

sent’ at a site if the observer indicated that a hummingbird

feeder was used at some point between November and April.

We used mixed-effects logistic regression models, implemented

with the R package lme4, to assess how the tendency to offer

nectar feeders changed across years in the historical versus

expanded range. In these models we treated year as a continuous

predictor variable, feeder presence as a binary response variable,

historical versus expanded range as a binary predictor variable

and site ID as a random effect.
Finally, to visualize the northward expansion of hummingbirds

in a manner quantitatively comparable with the northward expan-

sion of nectar feeders, we calculated the proportion of sites from

1997 to 2013 (n ¼ 2306 sites) supporting hummingbirds for each

year in the historical and expanded range. Because these data

included sites without nectar feeders and omitted details of

repeated counts at sites, we did not use it for any quantitative

comparisons, but present it for visual comparison only.
3. Results
The winter range expansion of the Anna’s hummingbird north-

ward along the west coast of North America from 1997 to 2013

was unambiguous (figures 1 and 2a, and table 1). Anna’s hum-

mingbirds were more likely to be found at colder sites in later

years (figure 2b and table 1). Contrary to global temperature

trends, mean minimum January temperatures at our sampling

locations slightly decreased from 1997 to 2013 (b ¼ 20.117

t ¼ 211.9, p , 0.001 for 1269 sites in the historical range,

and b ¼ 20.146, t ¼ 214.4, p , 0.001 for 1037 sites in the

expanded range; figure 3a). Temperature was a significant pre-

dictor of colonization in the expanded range but not in the

historical range, according to multi-season occupancy models

(tables 2 and 3).

Housing density was a significant predictor of colonization

in the expanded range but not in the historical range (tables 2

and 3). In the historical range, the only near-significant pre-

dictor of occupancy was elevation, with lower elevations

tending to have higher occupancy probability (table 2). AIC

model comparisons complemented these results (table 3); in

the historical range, the highest-ranking model (DAIC , 2)

included only elevation. In the expanded range, however,

the highest-ranking model contained housing density and

mean minimum January temperature. AUC statistics for



Table 3. Model selection for multi-season models for years 2002 – 2013 relating Anna’s hummingbird colonization (g) to site covariates in the historical range
and the expanded range. Effort and date were included in all models as predictors of detection ( p) and latitude as a predictor of occupancy (c).

location model parameters AIC DAIC weight

expanded range (above 428)

n ¼ 366 sites

H þ T 9 5091.6 0.00 0.57

H þ T þ P þ U 11 5094.2 2.53 0.16

H þ T þ E þ P 11 5094.7 3.07 0.12

H þ T þ E þ U 11 5095.3 3.65 0.09

H þ T þ E þ P þ Ua 12 5096.2 4.53 0.06

H þ E þ P þ U 11 5103.7 12.1 0.00

T þ E þ P þ U 11 5109.0 17.3 0.00

H 8 5112.0 20.4 0.00

T 8 5122.9 31.3 0.00

U 8 5128.7 37.1 0.00

E 8 5132.2 40.6 0.00

null 7 5151.0 59.4 0.00

P 8 5152.1 60.4 0.00

historical range (below 428)

n ¼ 539 sites

E 8 8365.9 0.00 0.49

H þ T þ E þ U 11 8368.5 2.61 0.13

H þ E þ P þ U 11 8368.5 2.62 0.13

T þ E þ P þ U 11 8369.0 3.11 0.10

H þ T þ E þ P þ Ua 12 8370.3 4.46 0.05

H þ T þ E þ P 11 8370.9 4.98 0.04

H þ T þ P þ U 11 8372.3 6.43 0.02

T 8 8373.0 7.15 0.01

H þ T 9 8374.0 8.10 0.01

U 8 8381.3 15.4 0.00

H 8 8391.2 25.3 0.00

null 7 8396.4 30.5 0.00

P 8 8397.0 31.1 0.00
aGlobal model ¼ housing density (H) þ mean min January temperature (T) þ elevation (E) þ total January precipitation (P) þ proportion urban land cover (U).

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170256

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 N

ov
em

be
r 

20
21

 

global models for each year indicated excellent discriminatory

power in the expanded range (AUC mean+ s.d. ¼ 0.82+0.07

across years) and poor discriminatory power in the historical

range (AUC mean+ s.d. ¼ 0.64+ 0.08 across years).

Hummingbird detectability (approx. 0.80 in global models)

increased with increasing latitude despite decreased occupancy

at higher latitudes (b ¼ 0.165, s.e. ¼ 0.024, z ¼ 6.86, p , 0.001,

n ¼ 905 sites). Thus, sites that supported hummingbirds at

higher latitudes were more likely to detect hummingbirds

during count periods than sites at lower latitudes.

Finally, nectar provisioning by people increased over time in

the expanded range, but not in the historical range. The pro-

portion of participants with nectar feeders varied significantly

among years at sites in the expanded range (b ¼ 0.351, z ¼
14.41, p , 0.001, n ¼ 1037 sites), but not in the historical range

(b ¼ 0.038, z ¼ 1.06, p ¼ 0.287, n ¼ 1269 sites; figure 3b).

People in the historical range were more likely to offer hum-

mingbird feeders compared with people in the expanded

range, with these proportions converging by 2009 (b ¼ 21.99,

z ¼ 22.00, p ¼ 0.045, n ¼ 2306 sites; figure 3b). Likewise, the

proportion of sites with hummingbirds in the historical and

expanded range converged by the late 2000s (figure 3c).
4. Discussion
We documented a clear northward winter range expansion of

Anna’s hummingbird over the past 20 years using data from

Project FeederWatch. We found strong support for the

hypothesis that the range expansion was facilitated by urban-

ization and provisioning of supplementary food resources.

First, we found that Anna’s hummingbirds have been colo-

nizing colder locations over time, suggesting that they are

not merely following warming winter temperatures north.

Despite long-term trends of increasing temperature in the

Pacific Northwest [49,50], we found no evidence of a sys-

tematic and directional warming of winter temperatures at

the sites in this study, suggesting that the time period was

too brief to reflect these long-term changes or that the specific

sites did not reflect this geographically broad trend.

Further, we found that Anna’s hummingbirds were more

associated with human-modified habitat in the expanded

range than in the historical range. This suggests that urban

habitat is most beneficial to these hummingbirds, where they

experience the strongest thermal limits. The benefits provided

by urban habitat could include the local retention of heat
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(e.g. the ‘heat island effect’ [17]), increased availability of

non-native flowers that bloom throughout the winter or

increased availability of supplementary food (nectar feeders).

Importantly, we found higher hummingbird detection prob-

abilities with increasing latitude, despite lower hummingbird

occupancy at higher latitudes. These higher detection probabil-

ities at northern sites suggest higher visitation rates at feeders

and potentially greater reliance on feeders at northern lati-

tudes. This result complements recent work showing that

some species may rely upon supplementary food to survive

outside of their core environmental envelope (e.g. Eurasian

blackcaps, Sylvia atricapilla, in England [31]; rose-ringed

parakeets, Psittacula krameri, in Paris [33]). Similar analyses are

warranted in ruby-throated hummingbirds (Arhilochus colu-
bris), which are increasingly overwintering in the southeastern

United States rather than migrating to Central America [34].

Finally, we found evidence that human behaviour may be

changing along with hummingbird behaviour. There was an

increased likelihood of people providing nectar feeders over

time in the expanded range compared with the historical

range. The hummingbird range expansion may have instigated

a change in human behaviour, or increased provisioning of

nectar feeders may have facilitated the hummingbird range

expansion; it is likely that these two outcomes are intertwined.

People in the expanded range who provide nectar feeders in

summer may leave those feeders out later into the year if

hummingbirds remain in the area, and those feeders may sim-

ultaneously enhance the winter survival of hummingbirds that

do not migrate. Although we cannot disentangle these two pat-

terns with our current dataset, we can conclude that more

supplementary food resources are available to hummingbirds

in the expanded range now compared with two decades ago.

The long-term ecological consequences of the Anna’s

hummingbird range expansion remain uncertain. Their

expansion may affect the migratory or breeding behaviour

of other hummingbirds. For example, rufous (Selasphorus
rufus), calliope (S. calliope) and black-chinned (A. alexandri)
hummingbirds breed in northwestern North America [35],

and may experience increased competition with Anna’s hum-

mingbirds. Additionally, if humans are facilitating the range

expansion to the extent that we suspect from this study, then

it is unclear if the expansion would be sustained in the

absence of supplementary nectar provisioning or non-native

plantings. Assessing the indirect effects of range expansions

on other species and the long-term dependence of native

species on human-provided resources remains an important

yet difficult task [20,21,25].
Understanding the nuances of how Anna’s hummingbird

migratory movements have changed over the past two decades

will benefit from studies of marked individuals. Nonetheless,

the broad pattern is clear: Anna’s hummingbirds are more

abundant in winter at northern latitudes now than they were

several decades ago, implying a reduction in the proportion

of individuals that migrate. Anna’s hummingbirds are also

more closely associated with human-modified landscapes in

more northern latitudes, implying that people have facilitated

this reduction in migratory behaviour and corresponding

winter range expansion. Our study complements previous

work showing that urban habitat and supplementary feeding

may facilitate range expansions into colder climates

[11,12,32,33] and potentially changes in migratory behaviour

[13,14,31]. This pattern of human-assisted colonization is not

unique to northward range shifts, as demonstrated by the colo-

nization of novel areas by invasive species (e.g. Eurasian

collared doves, Streptopelia decaocto [54,55]; house sparrows,

Passer domesticus [56]), population growth around urban

areas (e.g. Allen’s hummingbird, Selasphorus sasin [57]), and

even elevational range expansions (e.g. montane plants [58]).

Overall, this work highlights how the effects of anthropogenic

landscape modifications may interact with climate, in this case

furthering northward expansion beyond what would be

expected by historical thermal envelopes. It also highlights

how our seemingly benign hobby of feeding birds may have

far-reaching ecological consequences.
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