State of the Birds Report

 United States of America 2022

TABLE OF CONTENTS

State of the Birds at a Glance 4
The State of the Birds6
Shorebirds.. $\ldots . .$.
Grassland Birds 8
Aridland Birds. 9
Western Forest Birds 10
Eastern Forest Birds11
Waterfowl and Waterbirds 12-13
Hawaiian Birds $\begin{array}{r}. .14 \\ \\ \hline\end{array}$
On Alert and Tipping Point Species 16-17
The Road to Recovery 18-19
Birds, Our Heritage, and Our Future 20
Protecting Biodiversity 21
Environmental Justice 22-23
limate Resilience 24-25
A Convergent Destiny for Birds and People.,26-27
nvesting in Conservation and Quality of Life 28-29
Methodology, Sources, Credits, and Acknowledgments 30-3

We Gan Bend the Gurve to Bring Birds Back

The United States and Canada have lost 3 billion breeding birds since 1970-a loss of 1 in 4 birds, according to research published in Science in 2019. This steep decline in abundance can be reversed with new scales of conservation actions that benefit not only birds but also wildlife and people.

[^0]
State of the Birds at a Clance

The trends for our nation's birds reveal a vital message. Birds are declining overall in every habitat except in wetlands, where decades of investment have resulted in dramatic gains.

Conservation works when we give birds and nature a chance. Let's do more to save our nation's birds and benefit people in every state.

Three billion birds lost

1 in 4 breeding birds have been lost from the
United States and Canada in the past 50 years.

70 Tipping Point bird species in the United States

These 70 species have lost two-thirds of their populations in the past 50 years, and are on track to lose another 50% in the next 50 years.

Birds across the U.S. show downward trends in every habitat except in wetlands, where comebacks of waterfowl show the power of funding and policy investments.
+1,076\% Geese and Swans
+34\% Dabbling/Diving Ducks
+18\% Waterbirds
-5% Western Forest Birds
-26\% Aridland Birds -27% Eastern Forest Birds -30\% Sea Ducks -33\% Shorebirds -34% Grassland Birds -67\% Tipping Point Species

[^1]
Vision for Our Shared Future

Birds are telling us that the health of our nation is at stake. But the way forward is clear. When we help birds thrive, we sustain the essential lands and waters needed for abundant wildlife, resources, and well-being.

Scale up conservation to bring birds back and benefit people. Four decades of wetlands conservation have generated spectacular comebacks of ducks and geese-and improved water quality for people. Applying this winning formula in more habitats will help our nation's birds and natural resources rebound.

Restore habitats, improve quality of life

- Biodiversity: Helping birds improves the outlook for wildlife throughout restored habitats-supporting recreation, economic opportunities, and well-being for people.
- Environmental Justice: Bird conservation is a multiplier that benefits the health of our communities and addresses environmental inequities.
- Climate Resilience: Investing in bird habitats can sequester carbon, improve water security, and protect people from climate disasters.

Support proactive, voluntary conservation.
Proactive bird conservation before a species requires Endangered Species Act protection is the fastest, most effective way to bring birds back. And it benefits everyone: birds, landowners, businesses, and communities in every state.

Waterfowl have increased dramatically in the past 30 years with decades of investment by hunters, federal funding, and private-public partnerships to protect wetlands.

The State of the Birds

The 2022 State of the Birds report presents data on changes past five decades. These changes are shown for the groups of breeding species that are most dependent on each habitat and for which long-term monitoring data are available.

Population rebounds of waterfowl show that when investments in habitat conservation are made, we can bring birds back. A he same time, cominuing declines in other habitas

The Birds of Conservation Concern (BCC) list, mandated by law and updated by the U.S. Fish and Wildlife Service, identifies 269 migratory nongame bird species that, without additional conservation actions, are likely to become candidates for listing under the Endangered Species Act.

In this report, scientists with the Road to Recovery initiative have lists of Sp 70 Tipping Point species from the BCC and/or state ost half or more of their populations in 50 years and are on a trajectory to lose another half in the next 50 years-or they already have small remaining populations and face high threats, but lack sufficient monitoring data (see page 16).
The following pages highlight the plight of birds in each habitat, with the pronounced declines of Tipping Point species shown in red, for species with sufficient data.

In addition to summaries of trends, this report also highlights ples of how actions that benefit birds create healthier environments for people and all life that depends on these shared habitats.

Status: Steep losses in the last three decades
Many shorebirds make epic long-distance migrations, flying thousands of miles between Arctic breeding grounds and South American wintering areas-and encountering threats throughout the Western Hemisphere. Shorebird populations are down bs of Inregulated hunting in the Caribbean and South America, and unregulated hunting in the Caribbean and South America, and continued draining of shallow wetlands.

- One-third of shorebirds (10 species) are Tipping Point species with cumulative population losses exceeding 70% since 1980.

Collaborative international shorebira conservation strategies have been completed in both the Atlantic and Pacific Flyways; a mid-continent shorebird conservation strategy is under development.

GPS Technology Identifies a Driver of Declines For Lesser Yellowlegs
The critical first step in bringing back declining species is to understand how different populations may be exposed to differ ent threats throughout their annual migratory cycle. The steeply declining Lesser Yellowlegs is the most frequently harvested tracking in Latin Am fo. Sciersts used star GPs on migration from breeding areas in Canada and Alaska to their on migration from breeding areas in Canada and Alaska to their that Lesser Yellowlegs populations that bred in eastern Canada were much more likely to pass through unregulated hunting zones in the Caribbean and northeast coast of South America than the yellowlegs populations from Alaska. With this discovery, biologists can create more targeted and effective management for conservation, such as sustainable harvest regulations and outreach efforts to protect Lesser Yellowlegs on migration.

migration through caribbean hunting zones

MIGRATION THROUGH CARIBBEAN HUNTING ZONES showed that the birds that bred in eastern Canada were much more likely to pass through areas of high shorebird hunting pressure. Identitying specific risks and drivers
of bird declines is one of the keys for bringing birds back. Source: McDutie of bird declines is one of the keys for bringing birds back. Source: McDuftie et al, "Eastern-breeding Lesser Y Yellowlegs Are More Likely Than Western-Breeding Sirds to
Visit Areas with High Shorebird Hunting During Southward Migration," Ornithological
Aplications, Februay 2022

Status: The biggest landbird declines of any habitat
Grassland birds have suffered the biggest bird declines of any terrestrial biome since 1970. The eastern Great Plains are a hotspot of population loss due to habitat conversion, tree and shrub encroachment, and pesticide applications.

About two-thirds of this group (15 species) have Abour two-thirds of this group (5 species) have

- One-quarter of this group are Tipping Point species, including Mountain Plover, Sprague's Pipit, Henslow's sparrow, Chestnut-collared Longspur, and Bobolink-

Massive losses of birds can be reversed with voluntary incentive-based programs powered by partnerships, landowners, and Indigenous Nations to restore grasslands, using the successful North American Wetlands Conservation Act as a model

Conserving and Growing the Nation's Grassland Grasslands sustain rural economies and livelihoods in America's Heartland, including the shared heritage with Indigenous peoples Yet grasslands are America's most endangered habitat-in the United States, more than 60% of native grasslands have been lost to agriculur ch habitat loss. Another 125 million, high risk of being lost in the near future. The Central Grassand Roadmap Initiative is spearheading a collaborative response to this emergency by rallying a diverse conservation community (landowners, state and federal agencies, nonprofit groups, Indigenous Nations, and industry) around a vision that sees hope and opportunity in America's grasslands. The Roadmap collaborative combined population trend models for five declining grassland bird species (including Baird's Sparrow and Chestnutcollared Longspur) with maps of habitat-conversion risk to identify priorities for grassland bird habitat conservation. The map showcases the plight of grasslands across the Great Plains and opportunities to ensure resilient grasslands for birds and people

CORE AND AT-RISK GRASSLAND BIRD POPULATIONS The Central Grassland Roadmap Intititive has identified core and at-risk conservation and restoration on the best remaining grassland habitat. Source: Central Grassland Roadmap Initiative

Public Lands Are Essential for Aridland Bird Conservation The federal government and state agencies have a vital role to play in turning around bird declines in sagebrush and desert habitats. According to the 2011 State of the Birds report, public lands in the American West support more than half of the breeding distribution of aridland birds. Bureau of Land Management lands are particularly important, birds and more than two-thirds of the US. distributions of Sage Thrasher and Sagebrush Sparrow, both species with declining populations. U.S. Forest Service lands in coastal chaparral habitats are important for the declining Wrentit. National Park Service lands are important for some desert bird species, such as the Bendire's Thrasher (a Tipping Point species). The 2011 State of the Birds Report found that abou 80% of publicly owned aridlands were vulnerable to activities that could potentially degrade bird habitat-including energy development, off-road vehicle traffic, grazing, mining, and logging. Aridland bird habitat conservation can be compatilandscapes need to include measures to ensure long term healthy populations of aridland birds.

WESTERN PUBLIC LANDS ARE HABITAT FOR ARIDLAND BIRDS This map shows the cumulative range for 30 aricland bird species in North America,
with the vast majority of that range falling within the boundaries of federal and with
state public lands. Source: Aridland bird data from Bird Conservation Regions, state public lands. Source: ARidand bird data from Bird Conservation Regions
Bird Studies Canada and NABCI. Public lands map from GisGeography.com.

STATUS: Stable overall, but with warning signs

The overall population for the western forest birds group is much the same as it was 50 years ago, aided by protected habitats. But since reaching recent highs in the early 1990s, western forest birds have declined by nearly 20%

- Almost half of this group (19 species) currently have declining population trends.
- Five species have lost more than half of their population since 1970, including Tipping Point species such as Pinyon Jay and Rufous Hummingbird with poorly understood life cycles. More sci
oidentify the drivers of their declines
- Recent declining trends among Oak Titmouse, Williamson's Sapsucker, and other birds appear to be ssociated with the disruption patterns such as fire cycles.

STATUS: Long-term decline has leveled off

Since 1970 the overall population for eastern forest birds shows almost a 30% loss, but that loss curve has straightened out since 2009. Today some species previously in steep ecline-such as Red-co Wodpecker-are showing modest population gains.

- Forest restoration efforts in the East appear to be bending the curve of bird loss. Today the overall population of eastern forest birds is back to where it was in 2010.

Even the Tipping Point species in this group are showing signs of improvement. Though their population is collectively down by 63%, the rate of loss has slowed considerably in the past decade

- Joint Ventures led by the U.S. Fish and Wildlife Servic and partners have played a crucial role in targeting conservation actions with remakable results.

Birds Are Declining Where Western Forests Are Stressed For most of the past 100 years, western forests have been managed to encourage conifer tree dominance and discourage fires. But for many centuries before the 1900s, fires were common on this landscape, both natural wildfires and intentional burns by Indigenous peoples. Today hose hifer and broadeaf forest cover and successional stages have been disrupted, and large swaths of western forest landscapes have departed from their natural range of tree species and structural diversity. These areas of forest departure from natural patterns are also hotspots for western forest bird declines. Furthermore, these compromised forests have very little resilience to the forces of wildfire and climate change, which puts greater forest landscape health and forest resources (such as water reservoirs) at risk of disaster. Investments in forest restoration can turn around this dim outlook for western forests and western forest birds.

Bird population trend

BIRD DECLINES IN FORESTS THAT HAVE DEPARTED FROM HISTORIC CYCLES According to population trends generated by eBird data, bird numbers tend to be declining in forests that have departed from historic conditions and are most in need of disturbance restoration. Sources: Cornell Lab l eBird data 2007 -2019 (left map); DeMeo et al, "Expanding Our Understanding of Forest Structural Res.
Northwest," Northwest Science, Winter 2018 (right map).

Two Birds Making a Comeback

Over the last 50 years and across their ranges, the long-term population trends for Cerulean Warbler and Wood Thrush show declines of about 60%. But within the last decade, both birds are showing signs of stabilization-a lesser decline of about -0.03\%/year for for Wood Thrush. The Appalachion Mountains Joint Venture (AMMV)- The Appalnership of over 50 federal, state, and nonprofit organizations from Alabama and Georgia to New York-is leading the way to bend the loss curve for these declining birds, with forest management projects that restore the age and structural diversity of hardwood forests in the region. Some of the biggest local Cerulean Warbler and Wood Thrush population increases are occurring in AMJV work areas, which also benefit other songbirds and wildlife species as well as overall forest health.

FOREST RESTORATION WORKS FOR BRINGING BACK BIRDS In areas where the Appalachian Mountains Joint Venture has helped restore forests, data from eBird show remarkable increases in numbers of
Cerulean Warbler and Wood Thrush. Source: Cornell Lab leBird 2007-2019.

WATERFOWL AND WATERBIRDS

A Model Conservation Success Story
as

STATUS: Decades of population growth driven by conservation policy and cleaner water
The long-term recovery of waterfowl and waterbird populations is largely due to successful policy (such as the North American Wetlands Conservation Act and U.S. Farm Bill conservation programs), along with coordinated efforts by public-private partnerships under the North American Waterfowl Management Plan.

Despite their decades-long gains, ducks continue to face pressures from grassland habitat loss, wetland drainage, coastal wetland loss, and climate change impacts. Recent droughs have tipped duck populations downward-under eep duck populations heathy and resilient keep duck populations healthy and resilient.

Sea ducks face elevated threats from climate change, including effects on food resources, altered predator communities, and rapid changes to breeding habitats. Strategic solutions都

Goose populations are near historic highs, largely due to successful adaptation to agricultural and urban landscapes Yet some populations of Arctic and sub-Arctic nesting eese climate change and shifting environmental conditions.

TULE LAKE, SUMMER 2019
Western Waters: The crown jewels of waterfowl habitat in the American West-the Great Salt Lake, the Klamath River Basin, and the Central Valley of California-are turning into cracked-earth barrens. Years of drought and chronic below-average snowpacks have left vital water supplies at historic lows. The Great Salt Lake declined to its lowest level ever recorded in 2022. For the first time in their history, Lower Klamath and Tule Lake National Wildifie Refuges will be dry in fall 2022. In California's Central Valley, limited water supplies forced

Populations of some fish-eating waterbirds such as pelicans have increased greatly in recent decades, signaling an improvement in water quality. But nearly a third of waterbirds show delines, induring several marshes and ephemeral wetlands.

(

TULE LAKE, SUMMER 2021
60% reduction in rice acreage in 2022 , which traditionally provides crucial habitat for over 5 million wintering ducks. In all three regions, the effects of drought are exacerbated by rigid local water laws and over-allocation of limited water supplies that restrict sufficien water deliveries to waterfowl and waterbird habitats. Policies that reate efficient water-sharing solutions are desperately needed if crose and and drastic declines across the American West.

STATUS: A dire situation for some of the most endangered birds

The recent history of Hawaii's birds is full of extinctions, but current conservation actions are showing promise for turning the tide. Since western colonization began on the Hawaiian islands in 1778, almost half of the 73 endemic bird species and subspecies have gone extinct or are presurdert, and conservation efforts are staving off the creeping threats of climate change and mosquitoes and are rescuing the last individuals of some species.

- The estimated cumulative population for the highest risk birds (including Akikiki, Kiwikiu, and Akekee) is dangerously low, with fewer than 5,500 total birds left among the 10 most endangered Hawaiian species.
- Emergency actions to bring critically endangered birds into captivity for breeding and translocation to safer habitats are buying time for some species, such as the Akikiki of Kauai. But ultimately these strategies won't avoid extinction unless Hawaii's
forests are rid of mosquitoes that carry lethal diseases to birds.

STATUS: Global declines are reflected in U.S. waters

Seabirds are suffering cascading declines around the world; one study documented a 70% population loss for seabirds since the 1950s. Sadly those declines are also occurring in America's ocean waters, where about a quarter of U.S. seabird species are designated as Tipping Point species. Seabirds spend host their entire Iives on the ocean, so they are important indicators of the health of marine ecosystems.

- Climate change is a major stressor on seabird populations, as warming and rising ocean waters reduce nesting habitat, impact prey fish populations, and whip up deadly storms.
- Fisheries bycatch and the overfishing of prey fish also contribute significantly to seabird declines
- Other human-induced threats to seabirds include marine debris pollution (60% of seabird species have been found to ingest plastics and 40% have been entangled in debris) and invasive species on nesting islands (invasives such as rats have caused breeding population declines on islands for nearly half of seabird species).

Using Science to Fight Mosquitoes with Mosquitoes
The spread of non-native mosquitoes, which are vectors for diseases such as avian malaria, have devastated many populations of Hawaiian forest birds. Eleven of Hawaii's 17 honeycreeper species are federally listed under the Endangered Species Act, with several possibly going extinct within the next 3 years. For many honeycreepers, a illnesses on the islands is spreading with warming temperatures that reach higher into forest habitats. Scientists are fighting back with new biological technologies, using the naturally occurring Wolbachia new biological technologies, using the naturally occurring Woibachia
bacteria (which renders mosquito eggs unviable) to suppress mosquitoes in Hawaiian forests. Male mosquitoes (which don't bite birds or people) are bred in a lab with Wolbachia, then released to mate with wild female mosquitoes that then cannot successfully reproduce, Urgent efforts to begin releasing Wolbachia-male mosquitoes are underway, as landscape-scale mosquito control is the only hope for many endangered Hawaiian forest birds to survive in the wild into the
next century.

LAST CHANCE FOR HAWAIIAN FOREST BIRDS Landscape-scale mosquito control is the only hope that many
Hawaiian forest songbird species will sunvive into the next century such as the Kiwiki of Mavi

Puffin Colony Declines on Both Coasts

Puffin nesting colonies along both the Atlantic and Pacific Coasts exemplify the threats that seabirds face from food shortages. Declines in forage fish populations, caused by climate change effects and over-harvesting by commercia fishing operations, directly impact the ability of puffins Puffin colonies in the Gulf of Maine have experienced widespread nesting failures during marine heat waves (periods of unusually warm ocean waters), which have become increasingly common over the past decade. In the Northwest, Tufted Puffin colonies along the Oregon coast have dramatically declined since 1979 , with the number of active colonies down more than 50% and the estimated breeding population down a staggering 90%.

OCEAN HEAT WAVES CAUSE PUFFIN BREEDING FAILURES
At two Atlantic Puffin colonies on islands off the coast of Maine, breeding productivity plunged during periods of marine heatwaves. Higher ocean temperatures disrupt
prey fish populations, which hurts the ability of puffins to feed their young. Source: prey fish populations, which hurts the ability of puffins to feed their young. Source:
Unpubbished data from National Audubon Society and U.S. Fish and Widl life Service Maine Coastal Islands National Wildlifie Refuge Complex (see uww.fws.gov/refuge/

Sounding an Alarm About Steep Population Losses

In 2019, a study of 529 bird species with adequate long-term data for analysis (Science, Rosenberg et al.) found that 303 species in North America were declining-more than half of the bird species studied. Now scientists with the Road to Recovery initiative have issued an lert for 90 declining bird species-birds that are not yet federally listed breeding population since 1970 . The scientists further identified a subset of 70 Tipping Point species that could lose another half or more of their populations in the next 50 years, based on recent trajectories and expert assessments.

These Tipping Point species are high priorities for science and conservation because of their high vulnerability to extinction, high urgency, and steep population declines where known. All are included on the Birds of Conservation Concern List of the U.S. Fish and Wildlif Service and/or state lists of Species of Greatest Conservation Need.

On Alert: All of these bird species have lost half of their populations in the past 50 years

Baird's Sparrow	gbird	Sandpiper	ng Rail	s Hummingbi
Black-billed Cuckoo	merican Golden-Plover	Cassia Crossbill ${ }^{\text {* }}$	Kittlit's's Murrelet*	Saltmarsh Sparrow*
Black Skimmer	Ashy Storm-Petrel*	Chestnut-collared Longspur	Laysan Albatross*	Scripps's Murrelet*
Black Swift	Audubon's Shearvater*	Chimney Swift	Least Tern	Seaside Sparrow*
Canada Warbler	Bachman's Sparrow	Craveri's Murrelet*	LeConte's Sparrow	Semipalmated Sandpiper
Cerulean Warbler	Band-rumped Storm-Petrel*	Elegant Tern*	LeConte's Thrasher	Short-billed Dowitcher
Clark's Grebe	Bendire's Thrasher	Evening Grosbeak	Lesser Prairie-Chicken*	Sprague's Pipit
Eastern Whip-poor-will	Bicknell's Thrush*	Fea's Petrel*	Lesser Yellowlegs	Stilit Sandpiper
Grace's Warbler	Black-capped Petrel*	Golden-winged Warbler	Mottled Duck	Townsend's Storm-Petrel*
Long-billed Dowitcher	Black-chinned Sparrow	Great Black-backed Gull	Mountain Plover	Tricolored Blackbird*
Mourning Warbler	Black-footed Albatross*	Greater Sage-Grouse	Murphy's Petrel*	Wandering Tattler
Olive-sided Flycatcher	Black-vented Shearwater*	Guadalupe Murrelet*	Parkinson's Petrel*	brel
Red-headed Woodpecker	Black Rail*	Harris's Sparrow	Pectoral Sandpiper	Whiskered Auklet*
Rock Sandpiper	Black Rosy-Finch*	Heermann's Gull*	Pinyon Jay	Yellow-billed Loon
Snowy Owl	Black Scoter	Henslow's Sparrow	Prairie Warbler	Yellow-billed Magpie
Surfbird	Bobolink	Hudsonian Godwit	Red-faced Cormorant	Yellow Rail*
Thick-billed Longspur	Bristle-thighed Curlew*	Ivory Gul\|*	Red-legged Kittiwake*	
Western Grebe	Brown-capped Rosy-Finch*	King Eider	Ruddy Turnstone	
Wilson's Plover				

These Tipping Point species are on a trajectory to lose another 50\% of their remnant populations in the next 50 years if nothing changes.

These 90 bird species lost 50% or more of their populations during 1970-2019. The Tipping Point species are on a trajectory to lose another 50% of their populations in hhe next 50 years (39 species), or arready have perilously small populations and continue to face high threats, but lack sufficiedf
with an asterisk). For the USFWS

The Next Set of Species Plummeting Toward Endangered Status

Of the 1,093 bird species protected under the Migratory Bird Treaty Act, 89 birds have received additional protections as either threatened or endangered under the U.S. Endangered Species Act to prevent their extinction.

The Tipping Point species represent another 70 birds that could be next to face threatened or endangered status. Cumulatively, the Tipping Point species that have sufficien data for monitoring have lost more than two-thirds of their populations in the past 50 years.

Tipping Point species come from varied habitats, but they all have the same urgency-immediate science and conservation actions are needed to turn around declines.

70 Tipping Point Species
Urgent action is needed to help these birds before they become endangered.

Let's Help Birds Before They're Endangered

Our Best Chance for Success Is Now

Proactive conservation is the fastest, most effective strategy. Once bird species are endangered, they are at greatest risk of extinction and
require additional funding, protections, and decades of work to bring them back.
A strategic road to recovery will advance science-based conservation solutions
and voluntary partnerships needed to tip the balance, to drive steep declines

The Road to Recovery

Invest Now for the Biggest Payoff Support capacity and strong public-private parter. Reversing declines of birds across habitats can boost wildlife and quality of life for people in all 50 states.

Power Up New Science and Technology for Precision Conservation
Unite research discoveries, emerging technologies, and social sciences to pinpoint acute causes of species declines and reveal data-driven insights for reversing those trends.

Co-create Solutions with Communities and International Partners
Generate solutions that work, based on collectiv knowledge, participation, and mutual goals from ers, and decision-makers.

Peregrine Falcons made a dramatic comeback after biologists identified the driver of declines (DDT) and innovated a new technique for breeding Peregrine Falcons in
captivity and releasing them into the wild. Applying science and conservation can help bring birds back before they become endangered - a smart and costeeffective strategy for preventing extinction.

A Strategy to Reverse Declines

A strategic approach to bird conservation is needed to arrest declines of birds before they reach crisis levels. Science, technology, and insights from social science must be applied to fill data gaps, and solutions must be co-created with diverse groups of people impacted by conservation strategies.

Evening Grosbeaks have decined by 90% since have deciliend
1970. Scientists are workiig to understand why.

Lesser Yellowlegs Lill benefit rom consensuat will benefit from conservation Dinties toward socicioeconom and cultural solutions for
sustainable harvesting.
 Golden-winged Warbler
management tuvidines
pinnoin and seek to addres inpoint and seek to address Initing factors on both bree

Saltmarsh Sparrow recovery is possible with recovery is possible with
rrioritized actions to address sea-level rise across more tha dozen states identified by tr
Atantic Coast Joint Venture.

Kirtland's Warbler was removed from the
dangered Species
ist in 19 after years of ollabor

Birds, Our Heritage, and Our Future

Birds Offer Wins in Biodiversity, Climate Resilience, and Environmental Justice

The loss of 3 billion birds is an urgent biodiversity crisis for our country. Birds are key indicators of environmental health, so any successful measure of our nation's conservation and restoration progress should include evidence of a turnaround in bird populations. But the returns on helping birds will extend well beyond birds. Lands and waters across the United States will benefit as bird conservation offers bold opportunities for locally led, oluntary efforts that will protect, connect, and restore habitats.

Actions and initiatives to bring back birds can also play a role in achieving national goals for broader biodiversity protection, climate resilience, and environmental justice-all while staying true to the principles of benefitting all people, strengthening economies, using science as a guide, honoring Tribal sovereignty, and empowering private landowners as conservation drivers. The bottom line is that bird conservation benefits ever body: wildife, people, entire ecosystems, and Planet Earth.

Birds Are a Key Investment

 for Protecting BiodiversityWith more than 12,000 animals and plants identified by wildlife agencies in all 50 states as Species of Greatest Conservation Need, the starting points for biodiversity conservation in the U.S. may seem almost endless. But bird offer a solid start-as species that are highly responsive to conservation efforts, and as indicators of biodiversity renewal that benefit all manner of plants, mammals, amphibians, insects, and fish

When funding is dedicated to help a bird in distress-and science guides conservation action-bird populations respond with big gains. But that's not all.
Ecosystem restoration is like the rising tide that lifts all boats; many other at-risk species of wildife and plants benefit from habitat conservation for birds.

Restoring warbler habitat helps butterflies

The Kirtland's Warbler was a charter member of the Endangered Species Act in 1973 , when only about 160 breeding pairs of these dandelion-yellow warblers were left in a sliver of Michigan. Almost 50 years later-after an intensive effort by the U.S. Forest Service, U.S. Fish and Wildlife Service, and state partners in Michigan-more than 2,300 Kirtland's Warbler pairs are breeding across Michigan, as well as in Wisconsin and Ontario, and the species was triumphantly delisted in 2019. Ecosystem restoration was the key to success, in particular the revitalization of jack-pine forests, which also benefitted other species-such as the federally endangered Karner blue butterfly.

Creating tree-cavity homes for woodpeckers and bats

 The Red-cockaded Woodpecker-another charter member of the ESAhas responded strongly to conservation action, with efforts focused on miltary bases and private forestlands in the Southeast. Over the past few just a few states to 11 states today stretching from Virginia to Texas. Th renewal of longleaf pine forests is bringing the woodpecker back, while als creating breeding habitat for other endangered tree-cavity nesters, like the Florida bonneted bat (one of the most imperiled mammals on Earth).The future of many plants depends on birds
Recent research points to the interconnectedness of birds and plants, Recent research points to the intercon actedness of birds and plants,
and shows why bringing back birds is a key to ensuring climate adaptation and shows why bringing back birds is a key to ensuring climate adaptation
for plants. The study, published in the journal Science (Fricke et al. 2022), showed that the ability of animal-dispersed plants to keep pace with climate change has been reduced by 60% due to the loss of birds, as well as mammals. More than half of all plant species rely on animals to disperse their seeds, and the seed stage is the only time when plants have the opportunity to move into latitudes or elevations where climatic conditions may be most suitable in the future. Put simply, the loss of birds has much larger ecosystem ramifications; and conversely, the revival of bird populations holds the potential for much broader biodiversity gains.

Birds and people alike need healthy environments. Several recent studies show that Black, Latino, and Indigenous communities experience outsized environmental risks. Collaborative environmental investments in disadvantaged communities can advance environmental justice along with the conservation of birds.

California: Birds and ecosystem benefits make the difference for flood-ravaged farm community

Hamilton City is home to 2,000 people along the Sacramento River in one of the most flood-prone regions of California. Six due to rising waters.

The problem was an old levee-originally built to protect farm fields-that had become severely degraded, yet it was the only line of flood protection. For many years the U.S. Army Corps of Engineers was unable to make levee improvements, due to federal requirements for financial benefits from proposed flood control projects. Hamilton City is designated as a disadvantaged community by the California Department of Water Resources, and property values in the area couldn't meet the threshold for protected assets.

Hamilton City resident Jose Puente and his wife, Lee Ann Grigsby-Puente, had been working for levee improvements since Grigsby-Puente, had 1970 s, organizing taco and tamale sales to form a community group that could make a case for support. Still the answers weren't good, and the future looked even worse-with water runoff along the Sacramento River projected to increase up to 60% by 2100 due
o climate change. Then in 2000, Congress allowed ecosystem benefits to be included in assessments of flood-control projects. Us. Fish and Wildifif Sevice the Corps, and th oommuity on designing riperian habita into a new levee system. The completed project would connect nearby national wildlife refuge lands and create one of the largest contiguous areas of wildllife habitat along the Sacramento River-benefitting local populations of Red-tailed Hawks; several at-risk bird species such as Lazuli Bunting and Bank Swallow; and 35 federally endangered species, including Western Yellow-billed Cuckoo and Least Bell's Vireo.
With the benefits for birds and riparian habitat included, the federal cost-benefit analysis climbed above the required thresh old and the project was inally greenighted for federal funding which was ultimately deeded to the local reclamation district, The Hamilton City setback levee was completed in 2021, and Puente's vision finally became reality-a $\$ 100$ million federal flood-protection project at last delivered for a tight-knit commu nity who had been asking for flood relief for 50 years.

Houston: Greening up urban areas can provide relief for inner-city communities and migratory birds Urban heat islands of concrete and pavement can get up to 22 degrees F hotter than surrounding suburban and rural areas. People living in heat islands are more vulnerable to heat exhausPeople living in heat islands are more vulnerable to heat exhaus-
tion, which complicates heart and respiratory conditions. Climate forecasts say the problem is going to get worse, with more frequent and prolonged periods of extreme heat. Many of our nation's big cities (and urban heat islands) are clustered along the coasts, which are also major corridors for bird migration. For example, more than 2 billion birds migrate across the Gulf of Mexico in spring. The exhausted birds that make landfall along the Texas coast are looking for safe places to rest and refuel, onservation initiative like the Urban Bird Treaty progra offer funding opportunity to green up urban heat islands and get

or-for-one benefits-providing shade and cover for residents in the Houston neighborhoods that revister the high est surface-heat temperatures, while also adding to the city's stopover habitat for migratory birds.
'Greening urban areas with native trees helps restore urban habitat for birds while Iso improving community health, especially for underserved, inner-city communities of color."

EVENING HEAT INDEX ON AUG. 7, 2020

CONSERVATION CROSSOVER OPPORTUNITY: WHERE URBAN BIRD TREATY GREENING COULD HELP BIRDS AND PEOPLE A comparison of the stopover areas used by migratory birds (radar image of migratory birds taking off at sunset by bircast) and surface heat temperature readings in
the Houston area (by the H3AT: 2020 Heat Mapping Campaign) shows where Urban Bird Treaty-funded greening projects could simultaneously provide migrator-bird habitat and cooling shade cover in heat islands.

Pueblo lands: Restoring Rio Grande backwaters to revitalize bird habitat and cultural traditions

In the Desert Southwest, wetlands and riparian areas are crucial to birds (harboring up to 90% of local avian diversity) and Indigenous peoples (for sustaining life and traditional practices). Several decades of channelization along the Rio Grande in New Mexico have lowered the river's water flows, in the process elimi nating many wetlands, backwaters, oxbows, and wet meadowsand diminishing Tribal ways of life.

In recent years, more than a dozen Tribes in the regionincluding the Pueblos of Santa Ana, Isleta, Sandia, and Ohkay Owingeh-have been leading an effort to bring back the Rio Grande's backwaters and oxbows. By including birds and wildlife habitat in their projects, the Tribes were able to access ederal funding and agency resources. The collaborative projects restored riparian habitat for local birds on the Endangere Species list, such as Southwestern Willow Flycatcher and

Western Yellow-billed Cuckoo, while creating fertile meadows for he gathering of culturally important medicinal plants for Tribes.

Restored backwaters and oxbows flush with cottonwoods and willows also provide better water filtration-removing excess itrogen and phosphorous for cleaner water-and the higher water for crops.

Restoring rivers protects birds and people, which in turn helps preserve our culture. After all, we are one."

In 2021, Audubon released a report that showed how bird habitat can also play a key role in sequestering carbon. According to the Audubon Natural Climate Solutions Report, the United States could realize nearly a quarter of its Paris Agreement commitment to reduce greenhouse gas emissions by protecting and managing priority bird habitats that will keep more than 100 billion tons of carbon out of the atmosphere.
hose priority bird habitats can also provide climate resilience in other ways-by mitigating against floods, purifying and storing drinking water supplies, and making our air cleaner. Birds bring money to the climate-resilience fight, too. Across America, there are numerous examples of how bird-conservation funding for restoring forests, grasslands, and wetlands can also strengthen pur communities in the face of climate change

Four joint ventures could offset emissions from every registered vehicle in NYC for more than two decades

Migratory Bird Joint Ventures are working across North America to implement national bird conservation plans at local scales, cultivating partnerships in the landscapes where they work to restore habitats for priority bird species. Joint Ventures can play a big role in the nation's climate-resilience strategy, too

Implementing just four JV habitat-conservation plans would yield the climate equivalent of removing the greenhouse gas emissions from more than 2 million vehicles per year over the next two decades-o every registered vehicle in New York City

Restoring Forests in
Appalachian Mountains
Implementing the Appalachian Mountains JV's habitat-restoration Tipping Point species would Tipping Point species) would
restore forests across 150,000 acres of Appalachian woodlands from Georgia to New York. The restored forests will have high volumes of carbon sequestration
and storage, as well as improved resiliency against disease and invasive pests. The AMVV's plan will
also add 4.000 Wood Thrush breedalso add 4,000 Wood Thrush breeding territories to the region, while
enhancing timbervalues on private lands and bolstering the Appalachians as one of America's largest carbon sinks

Million Metric
Tons Carbon

Reforesting Bottomlands in
Lower Mississippi Valley The Misissippi Alluvial Valley has
lost more than 80\% of bottomland forests in an important region for
forman migratory birds-wintering home for 40\% of waterfowl in the MissisSthird of the global population of Prothonotary Warbler. The Lower
Mississipi Vallees V 1.73 million acres of bottomland forests in Arkansas, Kentucky, Louisiana, Misssissippi, Missouri, and Tennessee-enough habitat
to supporthealthy oopulations to support healthy populations
of breeding forest landbirds and diverse waterfowl species while storing nearly 60 million metric tons
of carbon.

Protecting Duck Habitat
in Prairie Potholes
in Prairie Potholes The Prairie Pothole region is the most important breeding grounds
for waterfow in all of North Amer for waterfowl in all of North Amer-
ica, supporting more than 50% of ica, supporting more than 50% of
the continental duck population. the continental duck population
The Prairie Pothole VV habitat plan is built around five primary
duck species (Mallard, Biue duck species (Mallard, Bluewinged Teal, Gadwall, Northern
Shoveler, and Northern Pintail) Shoveler, and Northern Pintani
and calls for perpetual protecand ants for perpetual protec-
tion of 133,000 acres of prairie
wetlands and 446,000 acres of wetlands and 446,000 acres of
native grasslands-adding to native grasslands-adding to the
vast carbon-capture complex in vast carbon-capture complex in
the prairie pothole landscape of lowa, Minnesota, Montana, and Iowa, Minnes
the Dakotas.

Million Metric

Tons Carbon

Conserving Riparian Habitat in
Along the Sacramento and San Along ne Racram California, birds
Joaquin Rivers
such as the federally endangered such as the federally endangered
Western Yellow-billed Cuckoo Western Yellow-billed Cuckoo
and Least Bell's Vireo rely on riparian systems for breeding habitat. The Central Valley JV has
produced a plan that calls for produced a plan that calls for
conserving more than 300,000 conserving more than 300,000
acres of riparian forests. Meeting the habitat goals for healthy populations of cuckoos, virieos,
and many other bird species wil and many other bird species wil
also add to the buffers for local also add to the buffers for local
communities against river flooding and grow the Central Valley landscape's capacity to capture and store carbon.

7

Million Metric
Tons Carbon
$*$ Numbers of vehicle emissions calculated using EPA Greenhouse Gas Equivalencies Calculator
JV carbon sequestration figures calculated over 25 years, except for Prairie Pothole JV (20 years

Accelerating a fire-safe future for Oregon's forest communities

Throughout western forests, Collaborative Forest Landscape Restoration Programs (CFLRPs) have the potential to increase populations of at-risk birds, while decreasing severe wildfire risks for some of America's most vulnerable wildland-urbaninterface communities. These fire-adapted forest landscapes historically burned regularly, but over the past 100 years such fires were suppressed and logging practices were largely unsustainable, causing fuel loads to build up. Now climate change is raising severe fire risks and threatening water security for communities such as Medford and Ashland in Oregon, which lie in one of th ighest fire-risk landscapes in the Paific Northwest.

These western forests also host a high diversity of at-risk bird species. The Partners in Flight (PIF) network developed a strat egy to use forest management as a catalyst for bird conservation hrough forest restoration work that mimics the regular healthy wildfires of the past and mitigates severe fire risks in western
forests. Working with the U. . Forest Service and local communities through the Rogue Basin and Northern Blues CFLRPs, the Klamath Bird Observatory is leading the PIF effort to add ceded Tribal, state, and private forestlands. Projects involving forest thinning, strategic fuels reduction, and the reintroduction of wildfire through prescribed burning are designed to restore a mosaic of high-value forest conditions, while protecting old-growth forests and riparian areas
By including PIF science in their planning, the CFLRPs have the potential to restore forests in a way that will reverse declines of Olive sided Flycatcher and Rufous Hummingbird, as well as several other streams, the projects are designed to accelerate a safer future for communities who currently live at high risk for catastrophic wildfire, including the 100,000 people in Ashland and Medford.

Restoring playas for birds and water security in New Mexico
In 2018, the city of Clovis, New Mexico, estimated that if agricultural irrigation continued at the current rate, the underground drinking water supply would only meet community needs for about 11 to 25 more years. That year the city formed a partnership I Playa Lakes Joint Venture to incluce playa restoration 1

Healthy playas-shallow, temporary wetlands found in the western Great Plains-are a primary source of groundwater recharge. Playas contribute up to 95% of the water flowing to the Ogallala Aquifer, which many rural communities depend on for their water supply, and they improve the quality of that water. However, many playas are no longer functional due to drainage and accumulated sediment.
Playas also provide important habitat for 185 species of birds, including Northern Pintail and Lesser Yellowlegs (a Tipping Point species). By working with state and local partners, Play communities funding to restore more than 4,100 acres of playas and surrounding grassland buffers in eastern New

Mexico-enough playa wetlands to supply hundreds of millions of gallons of clean drinking water into the local aquifer for Clovis and other communities.
The PLJV model is so successful that it's spreading, as communties from Kansas to Texas are now incorporating playa conserva tion into water security and sustainability planning.
"The Ogallala Aquifer decline is something that a lot of mayors are going to be faced with. My advice to other towns and other mayors would be have a plan, and be ready to implement new ideas such as leveraging playa lakes as a way to recharge the aquifer."

Michael Morris, mayor o Clovis, New Mexico

A Convergent Destiny for Birds and People

by J. Drew Lanham

It's a perfectly destructive storm-climate change; habitat destruction; pesticide impacts; outdoor cats; persecution and downright negligent behavior-wreaking havoc on feathered beings around the globe
Here in North America, birds face these Anthropocene headwinds and many struggle to make their way forward, even as they stand as symbols and impetus for so much environmental Wildlife Service, more than 45 million Americans call themselves Wirders or bird watchers, but billions of birds disappearing in a half century of decline posits an odd, juxtaposed picture of growing absence amidst heightened adoration.

For some species like the Black Rail and Cerulean Warbler, the steep declines imperil local populations with extirpation. For those and too many others, endangerment and extinction loom. As once common species like Northern Bobwhite and Rusty Blackbirds dwindle to rare across much of their range, how do we make head and heart space for considering birds and their ur, injustice, bias? Is there some link between us that can bring road efforts at doing better for us both, to bear?

Yes. I believe because we share the same home ranges as the birds we love-and within those geographical overlaps, we share the same air, same water, same soil, and ultimately the same fate-there's a convergent moral imperative to bird conser vation we can't underestimate. These aren't just "our" birds either. We share many migratory bird species with the rest of the Western Hemisphere and some with the world. This makes our actions, for better or for worse, wide-ranging.

Again that collective idea of range and fate sharing comes into play. Perhaps if we all saw ourselves as wild canaries in a global play. Perhaps if we all saw ourselves as wild canaries in a global urgent in our advocacy. Yes, millions make birds their hobby and perhaps thousands a profession. But it isn't just enough to watch or count or research or manage or even declare our love for the backyard robin, the shorebird at the beach, or the rare warbler in some hard-to-reach wilderness.

The dire circumstances at hand demand we activate affection, profession, and obsession into policy and practice that mitigate the storms that stall flight and ditch so many species into seas of declining despair.
Consider this: At some point in our not-so-long-ago history, someone looked skyward and dismissed the uncountable hordes of birds darkening the skies as inexhaustible, and in doing so, arrogantly dismissed abundance, even as avarice cannot be recovered, that road has long since closed. But we do have a chance now to act with science, managers, birders, and the public at large to co-produce (teamwork interdependently)
saving solutions that will benefit us all, birds and human beings. Yes, the convergent calamities of our time have been hard to push through. But a few past successes like the Bald Eagle and Peregrine Falcon (delisted from Endangered Species status in we can follow. From where will the tailwinds come that give us easier passage to better days?

Doing the right things for birds benefits people. Doing right by one another as humans benefits all else. Same earth. Same fate. It will be all of us understanding common plight, and in that knowing of shared geographies, life requisites, and destinies between
feathered and humanity, a move forward on this road to recovery.

At Left: Biologist Cathy Nishida holds a Willow Flycatcher during a project to At Left: Ehe flycatchers of the Sierra Nevada mountains. Flycatchers and humans both depend on water, namely clean and freely flowing rivers. Bringing back
fiycatchers and other birds holds the potential to bring back all the benefits that healthy ecosystems provide to people.

J. Drew Lanham

A native of Edgefield, South Carolina, J. Drew Lanham is an Alumni Distinguished Professor of Wildlife Ecology and Master Teacher at Clemson University. He is a writer Teacher at Clemson University. He is a wre Memoirs of a Colored Man's Love Affair with Wature, which received the Reed Award om the Southern Environmental Law Center and the Southern Book Prize, and was a finalist for the John Burroughs Medal.

Protecting our natural heritage is essential for healthy communities today and for future generations. Wildlife and people alike are facing growing threats from habitat degradation, climate change, and natural disasters. By helping birds, we help ourselves.
With all hands on deck-involving local communities as well as state, federal, and international efforts-we can restore nature for state, federal, and international efforts-we can restore
stable economies, natural security, and human health.

"Nature is essential to the health, well-being, and prosperity of every family and every community in America."
-Report by U.s. Depts of Interior Agriculture, Commerce and
white House Climate Task Force, 2021

Here's How to Lift Up Birds and Communities in Every State

Past successes show that bird conservation is a smart and cost-effective investment that can benefit everyone: birds, landowners, hunters and anglers, industries, and communities.

Restoring Habitats

All Habitats: Investments from hunters and the North American Wetlands Conservation Act enabled waterfowl to rebound. Building on that success in other habitats can help save songbirds, shorebirds, seabirds, and more.

Across the Nation: Restoring lands and waters can create jobs and suppor healthy communities. Joint Ventures and the Urban Bird Treaty Program improve habitats for birds and benefit people

Internationally: The Neotropical Migratory Bird Act improves habitats and helps birds survive their journeys across the U.S., Latin America, and the Caribbean.

Effective Policies to Reduce Hazards

Bird Protections: Millions of birds are saved from harm through implementation of wildlife laws such as the Migratory Bird Treaty Act, which has prohibited killing or capturing protected species for more than a century
On Land: Each year, hundreds of millions of birds die in window collisions in the U.S. and Canada. Federal, state, and local efforts can take action to limit collisions. At Sea: Many seabird species are among the world's most imperiled birds and are at risk as commercial fisheries bycatch on our oceans. International efforts can expand coordination and implement actions to save seabirds.

Lights Out initiative to reduce bird collisions during migration season in Houston, Texas.

Smart Actions to Help Species in Trouble
Strategic Prioritization: The Fish and Wildlife Conservation Act requires step to identify priority species, habitat, conservation actions, and population trends. New science and technology can fill data gaps and pinpoint solutions that will make the biggest difference.
Enabling All States: Enable states and Tribes to help recover 12,000 Species of Greatest Conservation Need, including birds, and benefit local communities.

Methodology

Summaries of Population Change for Birds by Habitat
Summaries of Population Change for Birds by Habitat
Following the approach developed by Gregory and van Strien (2010), State of the Birds reports focus on composite summaries of population change for collections of species that share common characteristics such as a common primary habitat biome or taxonomic affinity. In this report, we provide composite indexes for biom obligate species as defined in earlier reports (Grassland, Aridland, Eastern Forest and Western Forest), for several taxonomic-based groups (Shorebirds, Waterbirds, Geese and Swans, Sea Ducks, and Dabbling/Diving Duck species), and for species on our Tipping Poin surveys used for their analysis, and summary trend estimates are presented as supplemental material at StateoftheBirds.org. This report describes population change for 259 species of North American birds summarized from 5 surveys: the North American Breeding Bird Survey (BBS, 176 species, Sauer et al., 2020), the Christmas Bird Count (CBC, 60 species, Meehan et al., 2020), the Waterfowl Breeding Population and Habitat Survey (WBPHS, 14 species, U.S. Fish and Wildlife Service, 2021), the American Woodcock Signing-ground Survey (SGS, 1 species, Seamans and Rau, 2021), and International Shorebird Surveys (ISS, 9 species, Smith and Smith, 2022). All of these data sources were used in Rosenberg etai. (2019), and we refer readers to that publication for f abundance were obtained from published sources (BBS, WBPHS, SGS) or from data managers (CBC ISS) In this analysis, we used results from the time period 1970-2019 for all surveys except for the ISS, for which results were only available for 1980-2019
Statistical analysis of composite summaries follows methods used in earlier State of the Birds reports. A quantitative description of the statistical model was published in Sauer and Link (2011). It employs a hierarchical model, for which input data are collections of estimates of population change for a species (at the survey-wide scale of summary) from a base year (1970 or 1980) to each subsequent year. For each year, the collection of actual population changes for be normally distributed on the log scale, and the latent mean change for the collection is estimated. The model is fit to all years post-base year, and the resulting model-based means form the composite trajectories of change for the species group. The ratios of the annual indexes of each year, divided by the annual index of the base year, was used to estimate the cumulative change in the species population for that year. See Sauer and Link (2011) for additional details regarding the model and its fitting to BBS and other survey data.

On Alert and Tipping Point Species

Scientists for the Road to Recovery initiative have identified 90 On Alert bird species in need of strong and immediate scientific action to pecovering their populations (page 16) These birds have high vulnera bility to extinction and steep population declines as described below with 50% or more of their populations lost during 1970-2019. Of the 90 On Alert species, 70 are Tipping Point species that show continued or accelerated recent declines that if continued could lead to the loss of 50% or more of their populations in the next 50 years (high urgency)-or they have perilously small populations, high threats, and
insufficient monitoring data (presumed high urgency/data deficient) We relied first on data already available in the Avian Conservation Assessment Database (ACAD)-a database maintained by Partners in Flight (PIF) and housed at Bird Conservancy of the Rockies. We categorized the species based on high vulnerability to extinction, steep population decline, and high urgency, as described below. High Vulnerability to Extinction: Vulnerability in the ACAD is assessed by carefully scoring a series of independent factors Population Size, Breeding and Nonbreeding Distribution, Threats, and Trend) that are combined into a single Combined Conservation
Score (CCS) that ranges from 4 to 20 (see the ACAD Handbook for a thorough description). Species that meet a threshold of CCS >1 are considered to be highly vulnerable and are placed on the ACAD Watch List. Species with CCS ≥ 16 show high vulnerability across multiple factors and constitute the Red Watch List.
Steep Population Decline: Based on the latest long-term population rend data for 529 U.S.//Canada species (Rosenberg et al., 2019), we dentified those species that are estimated to have lost 50% or more of their total adult breeding population since 1970. This group of species are assigned a Population Trend (PT) score $=5$ in the ACAD and include many Watch List species. Trend data have been updated through 2019 for this report.
Urgency: To assess urgency, we examined the most recent populaof BBS and other survey data. This analysis mirrors the survey data used to assess trends for 529 species in Rosenberg et al (2019) and have been updated through 2019. Notably this analysis includes a complete re-analysis of shorebird trend data by Paul Smith (unpublished 2021). By comparing long-term trends (back to 1970 for most species; to 1980 for shorebirds) with the most recent population trajectories (using a 3 -generation period to define "recent" period), and examining trend estimates in light of the 2022 State of the Birds composite results, we identified species in two urgency categories, as follows:
Species of High Urgency-species with large long-term populafion loss (>50\%) and with continued or accelerated recent declines that exhibit a "half-life" < 5 d
Presumed High Urgency/Data Deficient-Poorly monitored species that are believed to be declining have beorn assigned PT scores of 5 or 4 in the ACAD via expert opinion; for some of these, the population trend is completely unknown. This additional set of species are defined by a combination of small population size (PS = 4,5) and high threats (TB or $T N=4,5$) and have expert-assigned PT scores of 5,4 , or 3 . These species are marked with an asterisk on page 16.

Sources Cited

Gregory, Richard D. and van Strien, A. 2010. "Wild bird indicators: Using composite population trends of birds as measures of envionmental health." Ornithological Science 9(1), 3-22. https://doi org/10.2326/osi.9.3.
Meehan, T.D., LeBaron, G.S., Dale, K., Krump, A., Michel, N.L. and Wilsey, C.B. 2020. Abundance trends of birds wintering in the USA and Canada, Audubon Society, New York, NY, USA.

Partners in Flight. 2020 Avian Conservation Assessment Database, version 2020. Available at http://pifi.birdconservancy.org.
Rosenberg, K.V., A.M. Dokter, P.J. Blancher, J.R. Sauer, A.C. Smith, P.A. Smith, ..C. Stanton, A. Panjabi, L. Helft, M. Parr, and P.P. Mar 2019. Decline of the North American Avirauna. Science 10.1126 science.aaw1313.
Sauer, J.R., Link, W.A., and Hines, J.E. 2020. The North American Breeding Bird Survey, analysis results 1966-2019: U.S. G
Survey data release, https://doi.org/10.5066/P96A7675. Sauer J. R. and W. A. Link. 2011. Analysis of the North Ame Sauer, J. R. and W. A. Link. 2011 . Analysis of the North American Seamans, M.E., and R.D. Rau. 2021. American Woodcock populatio status, 2021. U.S. Fish and Wildlife Service, Laurel, Maryland.
Smith, A., and P. A. Smith. 2022. Analysis of population indices from International Shorebird Surveys, 1980-2019. Unpublished Analysis, 22 February 2022.
U.S. Fish and Willilife Service. 2021. Waterfowl population status, 2021. U.S. Department of the Interior, Washington, D.C. USA.

Image Credits

Pgs 4-5, Upper Green River, Wyoming wetlands by Dave Kimble/ USFWS; pg 8, Grasslands photo by USDA Forest Service; pg 9 , Sagebrush Steppe habitat photo by Famartin/Wikimedia Commons pg 10, Monument Rock Wilderness by US Forest Service-Pacific Northwest Region; pg 11, Adirondack National Park photo by heipei/flickr; pg 13, Tule Lake Summer 2019 \& 2021 by Mike Brasher/Ducks Unlimited; pg 14, Hawaii photo by Frederico Henrique; pg 15, Pacific Ocean by Xeon/Wikimedia Commons; pg 20, Holden, Utah by Ken Lund; pg 21, Karner blue butterfly by Ingrid
Taylar, Florida bonneted bat by Shalana Gray; pg 22, Jose Puente, Taylar, Florida bonneted bat by Shalana Gray; pg 22, Jose Puente, photo courtesy of The Nature Conservancy California; pg 23, The Rio Grande, Flickr/lamNewM exico; pg 24, New York City by Metro Forests by USFWS/Flickr, Prairie Pothole Region by USFWS Mountain-Prairie/Flickr, San Joaquin River by USFWS Pacific Southwest Region/Flickr: pg 25, Monument Rock Wilderness by US Forest Service-Pacific Northwest Region, Playa Restoration by playasworkfornewmexico; pg 26, photo of Cathy Nishida by Evan Johnson; pg 27, photo of Drew Lanham by Gately Williams; pg 28 , bird photographer photo by Melissa Groo, birder photo by Gately Wiliams, duck hunters photo by John Hoffman, child releasing bird photo by Timothy Rockhold, elementary school gardeners at Patterson Park Audubon Center photo by Susie Creamer, boater on Wade Lake in Beaverhead-Deerlodge National Forest, Montana courtesy of Forest Service/USDA; pg 29, Springwaters restoration and Wildlife Service, Houston Lights Out photo by John Benam, Cornell Lab of Ornithology/Houston lit photo by POND5, Whimb with GPS tracking tags on Deveaux Bank, photo by Andy Johnson/ Cornell Lab of Ornithology

Macaulay Library Photos

Cover, Lesser Yellowlegs by Jonathan Irons, Hooded Merganser by Brad Imhoff, Greater Sage-Grouse by Brandon Nidiffer, Kirtland's Warbler by Bryan Calk, Trumpeter Swan by Matt Misewicz; pg 3, Lesser Yellowlegs by Matthew Bode; pg 5, Bufflehead by Brad Imho
pg 6, Whimbrels by Andy Johnson; pg 7, Ruddy Turnstone by Patrice St-Pierre, Lesser by Ryan Sanderson, Lesser Yellowlegs in habitat by Barbara O'Neill; pg 8, Sprague's Pipit by Shailesh Pinto; pg 9, Greater Sage-Grouse by Melissa Hafting; pg 10, Bullock's Oriole by Sabine essen; pg 11, Cerulean Warbler by Anonymous, Cerulean Warbler by Alicia Ambers, Wood Thrush by Martina Nordstrand; pg 12, Mallard by David Cooney Jr; pg 14, liwi by Su Li, Kiwikiu by Alex Wang; pg Bryan Calk: pg 17 , Laysan Albatross by Lucas Corneliussen, Bobolink by Brad Imhoff, Greater Sage-Grouse by Brandon Nidiffer, Prairie Warbler by Anonymous, King Rail by Anonymous, Hudsonian Godw by Dorian Anderson; pg 18, Peregrine Falcon by David Chamberlin; pg 19, Evening Grosbeak by Bellemare Celine, Lesser Yellowlegs by Ryan Sanderson, Golden-winged Warbler by Zane Shantz, Saltmarsh Sparrow by Darren Clark, Kirtland's Warbler by Bryan Calk; pg 21, Kirtland's Warbler by Dubi Shapiro, Red-cockaded Woodpecker by an Davies, Clark's Nutcracker by Jeremiah Trimble; pg 22, Lazuli Bunting by Scott Ray.

Acknowledgments

This report was published by the North American Bird Conservation Initiative (NABCI), a forum of government agencies, private organizations, and bird initiatives.

Science Committee: Michael G. Brasher, Amanda D. Rodewald, Kenneth V. Rosenberg (co-chairs); Steven Albert, John D. Alexander, Scott Anderson, Kahi Borgmann, Greg Butcher, Miyoko Chu, Jennifer Cipolletti, Todd Fearer, Robert P. Ford, Thomas Gardali, Scott Johnston, Peter P. Marra, Susana Mateos, ohn R. Sauer (lead analyst), Caleb Spiegel.
Communications Committee: Scott Anderson, William Bevil, Kathi Borgmann, Justine Bowe, John Bowman, Jennife Cipolletti, Miyoko Chu, Catherine Combs, Christopher Deets, Valerie Fellows, Nicolas Gonzales, Kirstin Hill, Steve Holmer, Tykee James, Pat Leonard, Irene Liu, Elva Manquera, Susana Mateos, Corina Newsome, Emily Osborne, Kenneth V. Rosenberg, Jordan Rutter, Erik Schneider, Daniel Sheire, Parker Williams.

Editor: Gus Axelson; Designer: Jillian Ditner; Productio Support: Miyoko Chu, Marc Devokaitis, Kathi Borgmann; Web Editor: Hugh Powell. Essayist: J. Drew Lanham.

Special thanks: We are grateful to the following funders for their support of data-driven science through eBird: National Science Foundation, Wolf Creek Charitable Foundation, Leon Levy Foundation, NASA, Institute for Computational Sustainability, PSC, XSEDE. We thank the many contributors, scientists, photog raphers, and community members whose work and voices are featured in this report

Suggested Citation: North American Bird Conservation Iitiative. 2022. The State of the Birds, United States of America, 2022. StateoftheBirds.org

nabcí

(5) The INSTITUTE for BIRD POPULATIONS

Point Blue Conservation Science

[^0]: When Birds Thrive, We All Win

[^1]: Trends tor breeding bird species by group or by habitat during 1970-2019, except tor the shorebirds trend, which begins in 1980. For details, see pages 6-1

